
Non-commutative field theory approach to two-dimensional vortex liquid system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 L39

(http://iopscience.iop.org/0305-4470/37/3/L03)

Download details:

IP Address: 171.66.16.91

The article was downloaded on 02/06/2010 at 18:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) L39–L46 PII: S0305-4470(04)68664-1

LETTER TO THE EDITOR

Non-commutative field theory approach to
two-dimensional vortex liquid system

Kyungsun Moon1, Vincent Pasquier2, Chaiho Rim3 and Joonhyun Yeo4

1 Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea
2 Service de Physique Theorique CEA/Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette
Cedex, France
3 Department of Physics, Chonbuk National University, Chonju 561-756, Korea
4 Department of Physics, Konkuk University, Seoul 143-701, Korea

E-mail: kmoon@phya.yonsei.ac.kr, pasquier@spht.saclay.cea.fr, rim@mail.chonbuk.ac.kr and
jhyeo@konkuk.ac.kr

Received 10 September 2003
Published 7 January 2004
Online at stacks.iop.org/JPhysA/37/L39 (DOI: 10.1088/0305-4470/37/3/L03)

Abstract
We investigate the non-commutative (NC) field theory approach to the vortex
liquid system restricted to the lowest Landau level (LLL) approximation. NC
field theory effectively takes care of the phase space reduction of the LLL
physics in a �-product form and introduces a new gauge invariant form of
a quartic potential of the order parameter in the Ginzburg–Landau (GL) free
energy. This new quartic interaction coupling term has a non-trivial equivalence
relation with that obtained by Brézin, Nelson and Thiaville in the usual GL
framework. The consequence of the equivalence is discussed.

PACS numbers: 11.10.Nx, 74.25.Qt

1. Introduction

In the presence of a strong magnetic field, condensed matter systems of charged particles are
often characterized by the lowest Landau level (LLL) physics. In high-Tc superconductors, for
example, thermal fluctuations are much more effective than they are in conventional low-Tc

superconductors because of strong anisotropy, high temperature and short coherence length
[1]. A large portion of the field–temperature phase diagram of a high-Tc superconductor
is occupied by the vortex liquid phase resulting from the melting of the Abrikosov vortex
lattice. Since only fluctuations in the LLL order parameter are important near Hc2(T ), the
LLL approximation, where the higher Landau modes are neglected altogether, has been widely
used to study the vortex liquid phase in high-Tc superconductors as well. The higher Landau
modes effectively renormalize the phenomenological parameters in the LLL theory, and the
quantitative studies [2] of this effect show that the LLL approximation is valid over a wide
range of phase diagrams below Hc2(T ).
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The vortex system was originally studied by Abrikosov [3] using LLL Ginzburg–Landau
(GL) theory. Brézin, Nelson and Thiaville (BNT) [4] first studied the fluctuation effects near
the upper critical field Hc2(T ) in type-II superconductors using the functional renormalization
group (RG) on the LLL GL theory and found that the fluctuations drive the phase transition
into first order.

On the other hand, the projection to the LLL completely quenches the kinetic energy for the
two-dimensional system and induces non-commutativity between two otherwise independent
coordinate variables just as it appears in matrix multiplications [5]. Due to this non-commuting
nature between coordinates special care has to be taken to analyse LLL.

A useful tool to deal with these systems is the non-commutative (NC) field theory [6, 7],
which easily incorporates the phase space reduction of the system. The main advantage of NC
field theory is that one can use the ordinary field theoretical technique used for commuting
coordinates, but with field multiplication replaced by the �-product. In fact, the NC field
appears in many different contexts from quantum gravity at the Planck scale and string theory
[8] to condensed matter systems. Recent studies of NC real scalar field theories show many
interesting properties such as non-commutative solitons [9] and phase structure [10].

The quantum Hall (QH) system is considered as the most exemplary case of NC field
theory applicable in condensed matter physics. The NC field approach is used for the system
with strong magnetic field in [11]. The rigid fluid motion is described in terms of NC Chern–
Simons field theory to understand quantization of the filling factor of the QH system [12], and
the relation between NC U(1) gauge theory and fluid mechanics is investigated in [13]. In
addition, the skyrmion excitations in the QH system [14] have been studied based on the NC
nature of fermionic variables [15, 16]. In this letter we will consider the vortex liquid system
near the upper critical field Hc2 in a high-Tc superconductor in a magnetic field. This vortex
system is another example of LLL physics, which can be explored using the NC field theory.

The two-dimensional superconductor in a uniform magnetic field is effectively described
in terms of GL free energy,

F [�,�†] =
∫

d2x

(
1

2m

∣∣∣∣(−ih̄ �∇ − e∗

c
�A
)

�

∣∣∣∣2

+ α|�(�x)|2 +
β

2
|�(�x)|4

)
(1)

where � is an order parameter representing the Cooper pair condensate wavefunction, α, β

and m are phenomenological parameters and e∗ = 2e. The vector potential is given as
�A = B(−y/2, x/2) in the symmetric gauge. We consider the case where the order parameter
and its fluctuations are restricted to the LLL. This is believed to be a good approximation over
a wide range of the phase diagram below the upper critical field.

The LLL GL free energy [4] is written as H = H2 + H4 with

H2 = α2

∫
d2x|�LLL(�x)|2 H4 = α4

2

∫
d2x|�LLL(�x)|4 (2)

where α2 = α + h̄ωc/2, α4 = β and ωc = e∗B/(mc) is the cyclotron frequency. The magnetic
length is

√
h̄c/e∗B, h̄ and c will be set to 1 in the following. The LLL order parameters

are given as �LLL(ζ, ζ̄ ) = φ(ζ ) e−ζ ζ̄ /2 where φ(ζ ) is an arbitrary holomorphic function and
ζ = (x + iy)/

√
2 (ζ̄ = (x − iy)/

√
2) is the holomorphic coordinate (anti-holomorphic one).

We will omit the subscript LLL from now on.
For a systematic evaluation of the partition function, the order parameter is conveniently

written in the momentum space as

�(ζ, ζ̄ ) = φ(ζ ) e− 1
2 ζ ζ̄ =

∫
d2k

(2π)2
�̃(k, k̄) exp

( i

2
(kζ̄ + k̄ζ )

)
. (3)
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where �̃(k, k̄) = 2π exp(−kk̄/2)φ
(

2
i

∂

∂k̄

)
. After integration by parts one can obtain an

equivalent form �̃(k, k̄) = 2πexp
(− 1

2kk̄
)
φ(−ik) and φ(−ik) is the coordinate holomorphic

function φ(ζ ) with ζ replaced by −ik.
As first noted by BNT [4], the renormalization in the LLL can be summarized in an

effective gauge invariant quartic term as

H BNT
4 = α4

∫
d2ζ1 d2ζ2|�(ζ1, ζ̄1)|2gBNT(ζ1 − ζ2, ζ̄1 − ζ̄2)|�(ζ2, ζ̄2)|2.

The Fourier transform representation of the quartic term is given as

H BNT
4 = α4

∫ [
4∏

i=1

d2pi

(2π)2

]
(2π)2δ(2)(�p1 + �p2 − �p3 − �p4)g̃

BNT(p3 − p1, p̄3 − p̄1)

× (2π)4 exp

(
−1

2

∑
i

pip̄i

)
φ(−ip1)φ(−ip2)φ

†(ip3)φ
†(ip4). (4)

Here g̃BNT(k, k̄) is the Fourier transform of gBNT(ζ, ζ̄ ),

gBNT(ζ, ζ̄ ) =
∫

d2�k
(2π)2

g̃BNT(k, k̄) exp
( i

2
(kζ̄ + k̄ζ )

)
.

g̃BNT(k, k̄) takes into account the renormalization of the quartic term starting from the bare
value g̃BNT

0 (k, k̄) = 1. As was demonstrated in [17] the Fourier transformed representation of
the kernel gBNT(ζ, ζ̄ ) has many advantages in perturbative calculation. The Fourier transform
is also directly related to physical quantities describing the vortex liquid such as the structure
factor [18].

2. NC effective theory

The effective LLL theory can be reformulated using NC complex bosonic field theory, using
the coherent state representation,

〈ζ |l〉 = 1√
2πl!

ζ l exp

(
−1

2
ζ̄ ζ

)
(5)

where |l〉 is the angular momentum state. The coherent states consist of the (over-) complete
set of the LLL system,

〈ζ |ζ ′〉 =
∑

l

〈ζ |l〉〈l|ζ ′〉 = 1

2π
exp

(
−ζ ζ̄

2
− ζ ′ζ̄ ′

2
+ ζ ζ̄ ′

)
. (6)

The above description of the LLL in terms of the coherent states shows an essential
feature of the LLL. Note that the coherent state description of the one-dimensional harmonic
oscillator system comes from the minimal uncertainty wave packet, between the coordinate
x and the momentum px . In the LLL, it is not the coordinate and the momentum that do
not commute, but the two coordinates x and y. The non-commuting property of the two-
dimensional coordinates x and y, or ζ and ζ̄ , is the main result of the phase space reduction
due to the strong magnetic field.

Therefore, the two coordinates ζ and ζ̄ are to be treated as non-commuting operators. This
raises the ordering problem of coordinates and results in the awkward calculus of the analysis
[5]. To circumvent this inconvenient manipulation, one may introduce the non-commuting
operators and the �-product of the corresponding functions [8]. We regard x and y as ordinary
commuting coordinates but instead encode the ordering information into the wavefunction
utilizing the �-product.
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Suppose a function f (ζ, ζ̄ ) is given as a coherent state expectation value of an operator
Of : f (ζ, ζ̄ ) = 〈ζ |Of |ζ 〉, then the �-product of the two functions is defined as the Moyal
product

f � g(ζ, ζ̄ ) = exp(∂ζ̄ ∂ζ ′ − ∂ζ ∂ζ̄ ′)f (ζ, ζ̄ )g(ζ ′, ζ̄ ′)|ζ=ζ ′ (7)

consistent with operator product representation,

〈ζ |Ôf Ôg|ζ 〉 ≡ 〈ζ |Ôf �g|ζ 〉. (8)

The hatted operator Ôf can be different from the unhatted one Of by the amount of the normal
ordering.

The quadratic term GL free energy is reformulated as

K2 = 2α2

∫
d2ζ 〈ζ |�̂†

op�̂op|ζ 〉 = 2α2

∫
d2ζ�† � �(ζ, ζ̄ ) = 2α2

∫
d2ζ |�(ζ, ζ̄ )|2. (9)

The quadratic parts of the two Hamiltonians H2 and K2 are made equal thanks to the hatted
operator and hence by the nature of the Moyal product: integration of the Moyal product of
two functions is the same as that of the ordinary product.

The NC quartic term is written as

KNC
4 = α4

∫
d2�ζ d2�ζ ′[� � �†(ζ, ζ̄ )]gNC(ζ − ζ ′, ζ̄ − ζ̄ ′)[� � �†(ζ ′, ζ̄ ′)]

= α4

∫ [
4∏

i=1

d2pi

(2π)2

]
(2π)2δ(2)(�p1 + �p2 − �p3 − �p4)g̃

NC(p3 − p1, p̄3 − p̄1)

× v({pi, p̄i})(2π)4 exp

(
−1

2

∑
i

pip̄i

)
φ(−ip1)φ(−ip2)φ

†(ip3)φ
†(ip4) (10)

where the Fourier transformed g̃NC(k, k̄) is the renormalized one with the bare value
g̃NC

0 (k, k̄) = 1. This quartic term includes a new phase factor v({pi, p̄i}),

v({pi, p̄i}) = exp

(
1

8
[(p1p̄3 − p̄1p3) + (p2p̄4 − p̄2p̄4)]

)
+ (p3 ↔ p4)

= exp
( i

4

[−(�p1 × �p3) − (�p2 × �p4)
])

+ (�p3 ↔ �p4). (11)

The quartic term (10) is manifestly different from BNT construction (4), even though both
of them are gauge invariant. The gauge transformation is represented as a translation in the
vector potential, �A(�r) → �A(�r + �r0) = �A(�r)+ 1

e∗ �∇χ with χ(�r) = (e∗B/2)(�r0 ×�r) for arbitrary
�r0, and the wavefunction transformation

�(�r) → �(�r − �r0) exp

(
i
e∗B

2
(�r0 × �r)

)
. (12)

In terms of the holomorphic coordinates, the transformation reads for arbitrary ζ0

�(ζ, ζ̄ ) → �(ζ − ζ0, ζ̄ − ζ̄0) exp
[

1
2 (ζ ζ̄0 − ζ̄ ζ0)

]
or in the Fourier transformed space

�̃(k, k̄) → �̃(k − k0, k̄ − k̄0) exp
[

1
2 (kk̄0 − k̄k0)

]
for arbitrary complex momentum k0. The newly introduced phase factor v({pi, p̄i}) in the NC
quartic term (10) is invariant under the gauge transformation p → p + p0,

(p1p̄3 − p̄1p3) + (p2p̄4 − p̄2p4) → (p1p̄3 − p̄1p3)

+ (p2p̄4 − p̄2p4) + p0(p̄1 + p̄2 − p̄3 − p̄4) − p̄0(p1 + p2 − p3 − p4)
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since the extra contribution proportional to p0 (and to p̄0) vanishes due to the momentum
conservation.

There is another possibility for the quartic term, |� � �|2. Indeed, the renormalizability
of the theory with two terms is investigated in [19]. However, we ruled out the term |� � �|2
because this term is not invariant under the wavefunction transformation (12). Then, there
arises a question: How much will the gauge invariant phase factor v({pi, p̄i}) affect the
correlation? This issue will be answered in the following section.

3. Equivalence relation

The effect of thermal fluctuations in the vortex liquid system is studied by the partition function

Z =
∫

DφDφ† exp(−H [φ, φ†]/kBT ). (13)

One can perform the perturbative calculation using the bare propagator obtained from the
quadratic term of the Hamiltonian H2 = K2

〈φ†(ik̄1)φ(−ik2)〉0 = 1

2πα2
ek̄1k2 . (14)

The 2n-point function G(k1 · · · kn; kn+1 · · · k2n) = 〈φ†(ik̄1) · · · φ†(ik̄n)φ(−ikn+1) · · · φ(−ik2n)〉
and its higher order corrections are evaluated once the lowest order of the four-point function
is known. From K4 (10) the four-point function at the tree level is given as

G0
NC(k1, k2; k3, k4) ≡

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

>

>

>

>k̄1

k̄2

k3

k4

= −α4

α4
2

(
1

8π2

)
exp[k̄1k3 + k̄2k4]

∫
d2p

(2π)2
g̃NC

0 (p, p̄)

× exp

[
−17

32
pp̄ +

5

8
p̄(k3 − k4) − 5

8
p(k̄1 − k̄2)

]
. (15)

Rewriting this using f̃ NC(�k) ≡ exp
[− 9

64kk̄
]
g̃NC(�k) we have

G0
NC(k1, k2; k3, k4) = −α4

α4
2

(
1

8π2

)
exp

[
k̄1k3 + k̄2k4

] ∫
d2p

(2π)2
f̃ NC

0 (p, p̄)

× exp

[
−25

64
pp̄ +

5

8
p̄(k3 − k4) − 5

8
p(k̄1 − k̄2)

]
. (16)

This is compared with the BNT case;

G0
BNT(k1, k2; k3, k4) = −α4

α4
2

(
1

8π2

)
exp[k̄1k3 + k̄2k4]

∫
d2p

(2π)2
g̃BNT

0 (p, p̄)

× exp

[
−pp̄

2
+

1

2
p̄(k3 − k4) − 1

2
p(k̄1 − k̄2)

]
= − α4

α4
2

(
1

8π2

)
exp[k̄1k3 + k̄2k4]

∫
d2p

(2π)2
f̃ BNT

0 (p, p̄)

× exp

[
−pp̄

4
+

1

2
p̄(k3 − k4) − 1

2
p(k̄1 − k̄2)

]
(17)
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where f̃ BNT ≡ exp
[− 1

4kk̄
]
g̃BNT(�k). Comparing (15) with (17) we have an equivalence

relation if we put

f̃ BNT(k, k̄) = (
16
25

)
f̃ NC

(
4
5k, 4

5 k̄
)
. (18)

The same relation holds for all orders of the perturbation.

4. Remarks and conclusion

We reformulated the lowest Landau level effective Ginzburg–Landau theory from the non-
commutative field theory point of view. This NC theory naturally incorporates the non-
commuting nature of coordinates. As a consequence of the non-local behaviour of the system
due to the phase space reduction, gauge invariant factor v({pi, p̄i}) (11) appears in the quartic
interaction.

The appearance of the new gauge invariant factor does not seem to introduce any new
physics since there exists the non-trivial equivalence relation (18) between the coupling of NC
and that of BNT. Does this equivalence relation demonstrate the nonrelevance of the NC field
approach to the LLL vortex system? The answer is no. This is the disguised benefit of the
momentum space description.

Note that NC theory has the bare function g̃NC
0 (k, k̄) = 1 or f̃ NC

0 (k, k̄) = e− 9
64 kk̄ and the

corresponding bare function for BNT theory is given as

f̃ BNT
0 (k, k̄) = (

16
25

)
f̃ NC

0

(
4
5k, 4

5 k̄
) = 16

25 exp
(− 9

100kk̄
)

(19)

or in terms of the g function,

g̃BNT
0 (k, k̄) = 16

25 exp
(

4
25kk̄

)
. (20)

This effective BNT bare coupling cannot be Fourier transformed to the real space though it
can be formally put into a non-local form in the real space. In this sense, the NC theory covers
the larger domain of coupling constants in the coordinate representation where BNT theory
becomes unphysical. The gauge invariant phase factor v({pi, p̄i}) coming from the NC field
theoretical consideration has a very unexpected role from the BNT point of view. We note in
passing that the specific scaling factor 5/4 comes from the special form of v({pi, p̄i}) due to
the Moyal product. In general, one may introduce the arbitrary power of v without destroying
the gauge invariance and change the scaling factor by the same power.

On the other hand, as far as the RG flow is concerned, the runaway picture of g(ζ, ζ̄ ) does
not change and hence, signals the first-order phase transition. This can be seen as follows.
BNT theory has the bare function g̃BNT

0 (k, k̄) = 1 or f̃ BNT
0 (k, k̄) = e− 1

4 kk̄ . The corresponding
bare function of NC theory is given as

f̃ NC
0 (k, k̄) = (

25
16

)
f̃ BNT

0

(
5
4k, 5

4 k̄
) = 25

16 exp
(− 25

64kk̄
)

(21)

or in terms of the g function,

g̃NC
0 (k, k̄) = 25

16
exp

(
−1

4
kk̄

)
gNC

0 (ζ, ζ̄ ) = 25

16π
exp(−ζ ζ̄ ). (22)

One can follow the one-loop RG analysis in [4, 17] using the equivalent form (18) and arrive
at the same conclusion since the RG flow shares the same structure but with a different initial
condition.

Finally, one may study the vortex lattice formation using the NC formalism. Minimizing
the free energy is equivalent to minimizing the Abrikosov ratio [3], which, in the NC theory,
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is given by

βNC
A = 1

A

∫
d2r(� � �†)2

/{
1

A

∫
d2r|�|2

}2

(23)

where A is the area of the two-dimensional space. The vortex lattice solution satisfies the
periodicity condition,

|�(�r + �rI)| = |�(�r)| |�(�r + �rII)| = |�(�r)| (24)

with arbitrary periodicity vectors parametrized by �rI = �′(1, 0) and �rII = �′(ν, η). The flux
quantization condition gives the area of the unit cell η�′2 = 2π�2 with the magnetic length
� set to unity in this letter. In terms of the reciprocal lattice vector �Gmn, which satisfies
�Gmn · �rI = 2πm and �Gmn · �rII = 2πn, one may put

βNC
A = 16

25

∑
�Gmn

e− 9
100 | �G|2 . (25)

The minimum value is achieved for a triangular lattice with βNC
A = 1.7782. This is, however,

only slightly lower than that for the square lattice, βNC
A = 1.7789. In the conventional GL

theory, the Abrikosov ratio can be written as

βBNT
A =

∑
�Gmn

e− 1
4 | �G|2 (26)

which gives the well-known results, βBNT
A = 1.1596 for a triangular lattice and βBNT

A = 1.1803
for a square lattice. We note that this expression can also be obtained if one rescales the NC
result by G → 5

4G. From this, one may conclude that a triangular vortex lattice will also be
formed in the NC theory, although the difference in free energy between various vortex lattice
structures is small compared to that in the conventional GL theory.

In summary, we have studied the vortex system restricted to the LLL using the new
Ginzburg–Landau model inspired by the NC field theory. The quartic term in the new GL
model differs from the conventional one by the gauge invariant phase factor. We have shown
that the effect of this phase factor is the non-trivial rescaling in the correlation functions for
the vortex liquids as well as in the mean field quantities describing the vortex lattice. This is,
at first sight, quite puzzling, since one cannot rewrite the quartic term (10) in any simpler way
by rescaling the momenta into the form without the phase factor v. However, once this phase
factor is put into Gaussian integrations to calculate the correlation functions, they produce
the non-trivial rescaling as we have found in this letter. It will be interesting to study the
possibility of the physical quantity describing the vortex liquids, for which the phase factor
produces other effects than the rescaling. This is left to future work.

Acknowledgments

This work was supported by grant no R01-1999-00018 from the interdisciplinary research
programme of the KOSEF. JY and CR would like to acknowledge the hospitality from the
YVRC, CR from KIAS and SPhT, and VP from KIAS.

References

[1] For a review, see Blatter G, Feigel’man M V, Geshkenbein V B, Larkin A I and Vinokur V M 1994 Rev. Mod.
Phys. 66 1125

[2] Tes̆anovic Z and Andreev A V 1994 Phys. Rev. B 49 4064
Ikeda R 1995 J. Phys. Soc. Japan 64 1683



L46 Letter to the Editor

[3] Abrikosov A A 1957 Zh. Eskp. Theor. Fiz. 32 1442
Abrikosov A A 1957 Sov. Phys.–JETP 5 1174 (Engl. Transl.)
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